Enhancing integral imaging performance using timemultiplexed convergent backlight

2020 
A method to enhance the performance of an integral imaging system is demonstrated using the time-multiplexed convergent backlight technique. The backlight increases the space bandwidth of the integral imaging system. As a result, the resolution, depth of field, and viewing angle of the integral imaging system are increased simultaneously. The cross-talk noise is also decreased without using any optical barrier. One part of the added space bandwidth comes from the optimized illumination. The other part is converted from the time bandwidth of the system by time-multiplexing. The time-multiplexed convergent backlight modulates the direction of the backlight in time sequence to illuminate the elemental images. Then, the elemental images synthesize the 3D images using a microlens array. An elemental images rendering method using a conjugate pinhole camera and pinhole projector model is designed to dynamically match the illumination direction. The rendering method eliminates the distortion and maximizes the viewing angle and viewing zone. A field programmable gate array (FPGA)-based controller is used to manage and synchronize the time sequence of the backlight and the display devices. Using this technique, high-performance 3D images are realized. Comparison experiments of the integral imaging system using diffused backlight and convergent backlight are performed. The results show the effectiveness of the proposed technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []