High Temperature Creep-Fatigue Design and Service Experience

2008 
Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances under creep-fatigue hold the key to success. This paper presents extended experimental results obtained from creep, fatigue and creep-fatigue tests on the main structural materials retained for these concepts, namely: stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and its low activation derivatives such as Eurofer steel, and their more advanced grades strengthened by oxide dispersion. It shows that the existing recommendations made in design codes adequately cover individual damage due to creep or fatigue but often fall short under combined creep-fatigue interaction. This is partly due to the difficulties of reproducing service conditions in laboratory. In this paper, results from tests performed on components removed from reactor, after long service, are used to refine code recommendations. Using the above combined assessment, it is concluded that there is good confidence in predicting creep-fatigue damage for austenitic stainless steels. For the martensitic steels the effects of cyclic softening and microstructure coarsening throughout the fatigue life need more consideration in creep-fatigue recommendation. In the longterm development of ferritic/martensitic oxide dispersion strengthened grades with stable microstructure and no cyclic softening, appears promising provided problems associated with their fabrication and embrittlement are resolved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    2
    Citations
    NaN
    KQI
    []