Alumina‐Supported CoFe Alloy Catalysts Derived from Layered‐Double‐Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons

2018 
A series of novel CoFe-based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered-double-hydroxide (LDH) nanosheets at 300-700 degrees C. The chemical composition and morphology of the reaction products (denoted herein as CoFe-x) are highly dependent on the reduction temperature (x). CO2 hydrogenation experiments are conducted on the CoFe-x catalysts under UV-vis excitation. With increasing LDH-nanosheet reduction temperature, the CoFe-x catalysts show a progressive selectivity shift from CO to CH4, and eventually to high-value hydrocarbons (C2+). CoFe-650 shows remarkable selectivity toward hydrocarbons (60% CH4, 35% C2+). X-ray absorption fine structure, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and density functional theory calculations demonstrate that alumina-supported CoFe-alloy nanoparticles are responsible for the high selectivity of CoFe-650 for C2+ hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar-energy to produce valuable chemicals and fuels from CO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    214
    Citations
    NaN
    KQI
    []