XPS study of sulfide minerals surface oxidation under high-voltage nanosecond pulses

2019 
Abstract Surface modification of natural metal sulfides (pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and molybdenite) treated by high-power electromagnetic pulses (HPEMP treatment) has been studied by X-ray photoelectron spectroscopy as a function of HPEMP treatment duration. Two principal common steps and some differences in the surface evolution process were identified. The initial surface modification step was observed at low treatment doses (up to N ~ 103 pulses). Formation or accumulation in the surface layer of metal-deficient sulfide phase, oxides and hydroxides, elemental/polysulfide sulfur and/or metastable sulfur (thiosulfate, sulfite) was observed at this step. The second step (N ≥ 3·103 pulses) is characterized by thermal loss of elemental sulfur. Differences in the modification process, it was found that the chemical transformations of sulfur in the surface layer of pyrite, arsenopyrite, chalcopyrite include accumulation/formation of S0 (Sn2−) at the first transformation stage (up to N ~ 103 pulses) followed by its removal. In the case of sphalerite and galena, the surface sulfur transformation had a different pattern. It included formation/accumulation at the first stage of metastable sulfur species (thiosulfate, sulfite) converted at an increase treatment duration to the initial state (sulfide or disulfide).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    4
    Citations
    NaN
    KQI
    []