language-icon Old Web
English
Sign In

Sphalerite

Sphalerite ((Zn, Fe)S) is a mineral that is the chief ore of zinc. It consists largely of zinc sulfide in crystalline form but almost always contains variable iron. When iron content is high it is an opaque black variety, marmatite. It is usually found in association with galena, pyrite, and other sulfides along with calcite, dolomite, and fluorite. Miners have also been known to refer to sphalerite as zinc blende, black-jack and ruby jack.Tan crystal of calcite attached to a cluster of black sphalerite crystalsSharp, tetrahedral sphalerite crystals with minor associated chalcopyrite from the Idarado Mine, Telluride, Ouray District, Colorado, USAElmwood calcite specimen sitting atop sphaleriteGem quality twinned cherry-red sphalerite crystal (1.8 cm) from Hunan Province, ChinaSphalerite crystals from Áliva, Camaleño, Cantabria (Spain)Purple fluorite and sphalerite, from the Elmwood mine, Smith county, Tennessee, US Sphalerite ((Zn, Fe)S) is a mineral that is the chief ore of zinc. It consists largely of zinc sulfide in crystalline form but almost always contains variable iron. When iron content is high it is an opaque black variety, marmatite. It is usually found in association with galena, pyrite, and other sulfides along with calcite, dolomite, and fluorite. Miners have also been known to refer to sphalerite as zinc blende, black-jack and ruby jack. The mineral crystallizes in the cubic crystal system. Like other minerals with a cubic crystal structure, sphalerite may show a tetrahedral crystal habit. In the crystal structure, zinc and sulfur atoms are tetrahedrally coordinated. The structure is closely related to the structure of diamond. The hexagonal analog is known as the wurtzite structure. The lattice constant for zinc sulfide in the zinc blende crystal structure is 0.541 nm, calculated from geometry and ionic radii of 0.074 nm (zinc) and 0.184 nm (sulfide). It forms ABCABC layers. All natural sphalerites contain finite concentrations of various impurity elements. These generally substitute for the zinc position in the lattice. The most common are Cd and Mn, but Ga, Ge and In may also be present in relatively high concentrations (100s to 1000s of ppm). The abundances of these elements are controlled by the conditions under which the sphalerite formed, most importantly formation temperature and fluid composition. Its color is usually yellow, brown, or gray to gray-black, and it may be shiny or dull. Its luster is adamantine, resinous to submetallic for high iron varieties. It has a yellow or light brown streak, a Mohs hardness of 3.5–4, and a specific gravity of 3.9–4.1. Some specimens have a red iridescence within the gray-black crystals; these are called 'ruby sphalerite'. The pale yellow and red varieties have very little iron and are translucent. The darker, more opaque varieties contain more iron. Some specimens are also fluorescent in ultraviolet light. The refractive index of sphalerite (as measured via sodium light, average wavelength 589.3 nm) is 2.37. Sphalerite crystallizes in the isometric crystal system and possesses perfect dodecahedral cleavage. Gemmy, pale specimens from Franklin, New Jersey (see Franklin Furnace), are highly fluorescent orange and/or blue under longwave ultraviolet light and are known as cleiophane, an almost pure ZnS variety. Sphalerite is the major ore of zinc and is found in thousands of locations worldwide. Sources of high quality crystals include: Sphalerite is the most important ore of zinc. Around 95% of all primary zinc is extracted from sphaleritic ores. However, due to its variable trace element content, sphalerite is also an important source of several other elements, such as cadmium,, gallium germanium, and indium.

[ "Mineralization (biology)", "Hydrothermal circulation", "Pyrite", "Quartz", "Pearceite", "Tennantite", "Argentite", "Smithsonite", "Hessite" ]
Parent Topic
Child Topic
    No Parent Topic