Complex molecular genetic algorithm in the diagnosis of myeloproliferative neoplasms

2014 
INTRODUCTION: Mutations in Janus kinase 2, calreticulin and thrombopoietin receptor genes have been identified in the genetic background of Philadelphia chromosome negative, "classic" myeloproliferative neoplasms. AIM: The aim of the authors was to identify driver mutations in a large myeloproliferative cohort of 949 patients. METHOD: A complex array of molecular techniques (qualitative and quantitative allele-specific polymerase chain reactions, fragment analyzes, high resolution melting and Sanger sequencing) was applied. RESULTS: All 354 patients with polycythemia vera carried Janus kinase 2 mutations (V617F 98.6%, exon 12: 1.4%). In essential thrombocythemia (n = 468), the frequency of V617F was 61.3% (n = 287), that of calreticulin 25.2% (n = 118), and that of thrombopoietin receptor mutations 2.1% (n = 10), while 11.3% (n = 53) were triple-negative. Similar distribution was observed in primary myelofibrosis (n = 127): 58.3% (n = 74) V617F, 23.6% (n = 30) calreticulin, 6.3% (n = 8) thrombopoietin receptor mutation positive and 11.8% (n = 15) triple-negative. CONCLUSIONS: The recent discovery of calreticulin gene mutations led to definite molecular diagnostics in around 90% of clonal myeloproliferative cases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []