language-icon Old Web
English
Sign In

Calreticulin

3POW, 2CLR, 3DOW, 3POS81112317ENSG00000179218ENSMUSG00000003814P27797P14211NM_004343NM_007591NP_004334NP_031617Calreticulin also known as calregulin, CRP55, CaBP3, calsequestrin-like protein, and endoplasmic reticulum resident protein 60 (ERp60) is a protein that in humans is encoded by the CALR gene.1hhn: CALRETICULIN P-DOMAIN1k91: Solution Structure of Calreticulin P-domain subdomain (residues 221-256)1k9c: Solution Structure of Calreticulin P-domain subdomain (residues 189-261) Calreticulin also known as calregulin, CRP55, CaBP3, calsequestrin-like protein, and endoplasmic reticulum resident protein 60 (ERp60) is a protein that in humans is encoded by the CALR gene. Calreticulin is a multifunctional soluble protein that binds Ca2+ ions (a second messenger in signal transduction), rendering it inactive. The Ca2+ is bound with low affinity, but high capacity, and can be released on a signal (see inositol triphosphate). Calreticulin is located in storage compartments associated with the endoplasmic reticulum and is considered an ER resident protein. The term 'Mobilferrin' is considered to be the same as calreticulin by some sources. Calreticulin binds to misfolded proteins and prevents them from being exported from the endoplasmic reticulum to the Golgi apparatus. A similar quality-control molecular chaperone, calnexin, performs the same service for soluble proteins as does calreticulin, however it is a membrane-bound protein. Both proteins, calnexin and calreticulin, have the function of binding to oligosaccharides containing terminal glucose residues, thereby targeting them for degradation. Calreticulin and Calnexin's ability to bind carbohydrates associates them with the lectin protein family. In normal cellular function, trimming of glucose residues off the core oligosaccharide added during N-linked glycosylation is a part of protein processing. If 'overseer' enzymes note that residues are misfolded, proteins within the rER will re-add glucose residues so that other calreticulin/calnexin can bind to these proteins and prevent them from proceeding to the Golgi. This leads these aberrantly folded proteins down a path whereby they are targeted for degradation. Studies on transgenic mice reveal that calreticulin is a cardiac embryonic gene that is essential during development. Calreticulin and calnexin are also integral proteins in the production of MHC class I Proteins. As newly synthesized MHC class I α-chains enter the endoplasmic reticulum, calnexin binds on to them retaining them in a partly folded state. After the β2-microglobulin binds to the peptide-loading complex (PLC), calreticulin (along with ERp57) takes over the job of chaperoning the MHC class I protein while the tapasin links the complex to the transporter associated with antigen processing (TAP) complex. This association prepares the MHC class I for binding an antigen for presentation on the cell surface. Calreticulin is also found in the nucleus, suggesting that it may have a role in transcription regulation. Calreticulin binds to the synthetic peptide KLGFFKR, which is almost identical to an amino acid sequence in the DNA-binding domain of the superfamily of nuclear receptors. The amino terminus of calreticulin interacts with the DNA-binding domain of the glucocorticoid receptor and prevents the receptor from binding to its specific glucocorticoid response element. Calreticulin can inhibit the binding of androgen receptor to its hormone-responsive DNA element and can inhibit androgen receptor and retinoic acid receptor transcriptional activities in vivo, as well as retinoic acid-induced neuronal differentiation. Thus, calreticulin can act as an important modulator of the regulation of gene transcription by nuclear hormone receptors. Calreticulin binds to antibodies in certain area of systemic lupus and Sjogren patients that contain anti-Ro/SSA antibodies. Systemic lupus erythematosus is associated with increased autoantibody titers against calreticulin, but calreticulin is not a Ro/SS-A antigen. Earlier papers referred to calreticulin as an Ro/SS-A antigen, but this was later disproven. Increased autoantibody titer against human calreticulin is found in infants with complete congenital heart block of both the IgG and IgM classes.

[ "Chaperone (protein)", "Endoplasmic reticulum", "Mobilferrin", "CALR Exon 9 Mutation", "CALR Mutation", "Immunogenic cell death", "Calreticulin Gene" ]
Parent Topic
Child Topic
    No Parent Topic