Mechanics of the cellular microenvironment as perceived by cells in vivo

2021 
Tissue morphogenesis and repair, as well as organ homeostasis, require cells to constantly monitor their 3D microenvironment and adapt their behaviors in response to local biochemical and mechanical cues1-6. In vitro studies have shown that substrate stiffness and stress relaxation are important mechanical parameters in the control of cell proliferation and differentiation, stem cell maintenance, cell migration 7-11, as well as tumor progression and metastasis12,13. Yet, the mechanical parameters of the microenvironment that cells perceive in vivo, within 3D tissues, remain unknown. In complex materials with strain- and time-dependent material properties, the perceived mechanical parameters depend both on the strain and timescales at which the material is mechanically probed14. Here, we quantify in vivo and in situ the mechanics of the cellular microenvironment that cells probe during vertebrate presomitic mesoderm (PSM) specification. By analyzing the magnitude and dynamics of endogenous, cell-generated strains, we show that individual cells preferentially probe the stiffness associated with deformations of the supracellular, foam-like tissue architecture. We reveal how stress relaxation leads to a perceived microenvironment stiffness that decreases over time, with cells probing the softest regime. While stress relaxation timescales are spatially uniform in the tissue, most mechanical parameters, including those probed by cells, vary along the anteroposterior axis, as mesodermal progenitors commit to different lineages. Understanding the mechanical parameters that cells probe in their native 3D environment is important for quantitative studies of mechanosensation in vivo2-4,6,15 and can help design scaffolds for tissue engineering applications16-18.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []