Insulin-like growth factor I synergizes with interleukin 4 for hematopoietic cell proliferation independent of insulin receptor substrate expression.

1999 
In the present study, we investigated the potential role of insulin-like growth factor I (IGF-I) receptor (IGF-IR) in cell proliferation by overexpressing it in 32D myeloid progenitor cells. The overexpression of IGF-IR caused the transfectants to proliferate in response to IGF-I in the absence of insulin receptor substrate (IRS) expression. The activation of overexpressed wild-type IGF-IR, but not that of an ATP-binding mutant of IGF-IR, resulted in the increased tyrosine phosphorylation of several intracellular proteins, including SHC, Src homology 2-containing inositol-5-phosphatase, protein kinase C-δ, and Erk2. Grb2 association with SHC and mitogen-activated protein kinase (MAPK) activity was also enhanced in response to IGF-I stimulation. Interestingly, the stimulation of the IGF-IR transfectants with interleukin 4 (IL-4) also resulted in strong mitogenesis independent of IRS expression. Moreover, IGF-I and/or IL-4 induced long-term cell growth of the IGF-IR transfectants. IL-4 was able to synergize with IGF-I for DNA synthesis, even in the parental 32D cells and a pro-B-cell line, Baf3, indicating the physiological importance of the two growth factors in hematopoietic cell proliferation. IL-4 stimulation of the IGF-IR transfectants resulted in enhanced tyrosine phosphorylation of SHC, Erk2, and signal transducer and activator of transcription 6 (STAT6) proteins. Both IL-4 and IGF-I were able to induce c-myc early response gene expression, and this expression was maximal in the presence of both factors. Finally, we demonstrated that a MAPK kinase inhibitor was able to suppress mitogenesis of the IGF-IR transfectants in response to IGF-I and/or IL-4. Together, our results suggest that IL-4 synergizes with IGF-I for hematopoietic cell proliferation, likely through cross talk between SHC/Grb2/MAPK and STAT6 pathways and through c-myc gene up-regulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    48
    Citations
    NaN
    KQI
    []