Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display

2020 
Two-dimensional (2D) materials have attracted significant attention because of their outstanding electrical, mechanical, and optical characteristics. Because all of the conducting (graphene), semiconducting (molybdenum disulfide, MoS2), and insulating (hexagonal boron nitride, h-BN) components can be constructed from 2D materials, thin-film transistors based on 2D materials (2D TFTs) have been developed. However, scaling-up is necessary for these technologies to go beyond their initial implementation using the mechanical exfoliation method. Furthermore, it would be beneficial to find a method to realize high flexibility and/or transparency to their full potential. In this study, large-scale, flexible, and transparent 2D TFTs are developed and demonstrated as a backplane in active-matrix organic light-emitting diodes (AMOLEDs). With the optical chemical vapor deposition of the 2D materials, flexible (bending radius 70%) TFTs with high electrical performances (mobili...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []