Differential gene expression of multiple chondroitin sulfate modification enzymes among neural stem cells, neurons and astrocytes.

2011 
Abstract Chondroitin sulfate/dermatan sulfate (CS/DS) polysaccharides have been reported to play a crucial role in the proliferation and maintenance of neural stem cells (NSCs). However, little is known about the structural changes and functional role of CS/DS chains in the differentiation of NSCs. Western blots of NSCs, neurons and astrocytes in culture, with three CS-polysaccharide antibodies of different specificities, revealed marked differences in CS structure among the three cell types. To confirm this finding, we measured gene expression levels of CS sulfotransferases and C5-epimerase in these cell types, as these are responsible for producing the high structural diversity of CS/DS. Expressions of chondroitin 4-O-sulfotransferase, chondroitin 6-O-sulfotransferase, and N -acetylgalactosamine 4-sulfate 6-O-sulfotransferase mRNAs were low in cultures of differentiated neural cells, such as neurons and astrocytes, in comparison to NSCs. In contrast, expressions of uronyl 2-O-sulfotransferase and C5-epimerase mRNAs were higher in the differentiated neural cells than NSCs. Thus, we first provide evidence to support the hypothesis that CS/DS undergoes structural changes during NSC differentiation. The structural changes in CS/DS may be implicated in the regulation of NSC differentiation through interactions with growth/neurotrophic factors and cytokines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    8
    Citations
    NaN
    KQI
    []