Atmospheric Chemistry of Methyl Isocyanide - an Experimental and Theoretical Study.

2020 
The reaction of CH3NC with OH radicals was studied in smog chamber experiments employing PTR-ToF-MS and long-path FTIR detection. The rate coefficient was determined to be kCH3NC+OH = (7.9 ± 0.6) × 10-11 cm3 molecule-1 s-1 at 298 ± 3 K and 1013 ± 10 hPa; methyl isocyanate was the sole observed product of the reaction. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ quantum chemistry calculations showing the reaction to proceed exclusively via electrophilic addition to the isocyanide carbon atom. Based on the quantum chemical data, the kinetics of the OH reaction was simulated using a master equation model revealing the rate coefficient to be nearly independent on pressure at tropospheric conditions and having a negative temperature dependence with kOH = 4.2 × 10-11 cm3 molecule-1 s-1 at 298 K. Additional quantum chemistry calculations on the CH3NC reactions with O3 and NO3 show that these reactions are of no importance at atmospheric conditions. The atmospheric fate of methyl isocyanide is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []