Progress toward a nonviral gene therapy protocol for the treatment of anemia.

2007 
Anemia frequently accompanies chronic diseases such as progressive renal failure, AIDS and cancer. Patients are currently treated with erythropoietin (EPO) replacement therapy using various recombinant human EPO protein formulations. Although this treatment is effective, gene therapy could be more economical and more convenient for the long-term management of the disease. The objective of this study was to develop a naked DNA-based gene therapy protocol that could fill this need. The hydrodynamic limb vein technology has been shown to be an effective and safe procedure for delivering naked plasmid DNA (pDNA) into the skeletal muscles of the limb. Using this method, we addressed the major challenge of an EPO-based gene therapy of anemia: maintaining stable, long-term expression at a level that sufficiently promotes erythropoiesis without leading to polycythemia. The results of our study using a rat anemia model provide proof of principle that repeated delivery of small pDNA doses has an additive effect and can gradually lead to the correction of anemia without triggering excessive hemopoiesis. This simple method provides an alternative approach for regulating EPO expression. EPO expression was also proportional to the injected pDNA dose in non-human primates. In addition, long-term (over 450 days) expression was obtained after delivering rhesus EPO cDNA under the transcriptional control of the muscle-specific MCK promoter. In conclusion, these data suggest that the repeated delivery of small doses of EPO expressing pDNA into skeletal muscle is a promising, clinically viable approach to alleviate the symptoms of anemia. Overview summary We delivered various EPO-expressing naked pDNA constructs into the skeletal muscles of the limb by the minimally invasive, hydrodynamic limb vein (HLV) procedure. Serum EPO concentrations and the physiological response were pDNA dose-dependent both in rats and rhesus monkeys. The kinetics and longevity of expression were promoter-dependent. The mouse MCK promoter provided stable expression for well over a year, while the effect of the CMV promoter construct lasted only for 5–7 months. By using repeated, small-dose pDNA injections in a rat anemia model, EPO expression was controlled at the most fundamental level of the delivered gene dose. Our results suggest that this non-viral gene therapy approach provides safe and long-term solution for the treatment of chronic anemia and that it can be tailored to the individual needs of the patient.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    47
    Citations
    NaN
    KQI
    []