Transient-enhanced diffusion in shallow-junction formation

2002 
Shallow junctions are formed in crystalline Si by low-energy ion implantation of B+, P+, or As+ species accompanied by electrical activation of dopants by rapid thermal annealing and the special case of spike annealing. Diffusion depths were determined by secondary ion-mass spectroscopy (SIMS). Electrical activation was characterized by sheet resistance, Hall coefficient, and reverse-bias diode-leakage measurements. The B+ and P+ species exhibit transient-enhanced diffusion (TED) caused by transient excess populations of Si interstitials. The electrically activated fraction of implanted dopants depends mainly on the temperature for B+ species, while for P+ species, it depends on both temperature and P+ dose. The relatively small amount of diffusion associated with As+ implants is favorable for shallow-junction formation with spike annealing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    3
    Citations
    NaN
    KQI
    []