FDTD simulation of enhanced Faraday effect in plasmonic composite structures with rectangularly arranged Au particles.

2018 
Magneto-optical (MO) effects enable non-reciprocal optical components like optical circulators and isolators as well as a magneto-optical spatial light modulator with switching speeds superior to a digital micromirror and a liquid crystal device. To develop a magneto-optical device with high performance, it is desirable to use materials with large rotation angles and small extinction coefficients. In other approaches introduction of nanostructures, magnetophotonic crystals [1] and localized surface plasmon resonance (LSPR) [2] has been shown to provide enhancement of the Faraday effect for distinct wavelengths. This work shows how rectangular arrays of gold (Au) particles embedded into thin films of bismuth-substituted yttrium iron garnet (Bi:YIG) offer different phenomena in comparison with the square arrays previously studied [3] [4] [5]. This enhancement of Faraday rotation was first observed in samples fabricated and characterized experimentally [6].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []