Solutions for Displacement and Stress in Strain-Softening Surrounding Rock Incorporating the Effects of Hydraulic–Mechanical Coupling and Rockbolts Effectiveness

2016 
This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass incorporating the effects of hydraulic–mechanical coupling and rockbolts effectiveness. It follows the generalized Hoek–Brown failure criterion. Moreover, an improved numerical approach and stepwise procedure are proposed. This approach considers the deterioration of the strength, deformation, and dilation angle and the variation of elastic strain in the plastic region considering the effect of the hydraulic–mechanical coupling and the rockbolts effectiveness. The presented solutions were validated by FLAC results. Several examples are conducted to demonstrate the validity and accuracy of the proposed solution through MATLAB programming. Parametric studies are also conducted to highlight the influences of hydraulic–mechanical coupling and rockbolts effectiveness on stress and displacement. Results show that stress and displacement, incorporating the effects of hydraulic–mechanical coupling and rockbolts effectiveness, are between those when hydraulic–mechanical coupling or rockbolts effectiveness is considered separately. However, this theory needs more verification from practical engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []