Infiltrated photonic crystals for light-trapping in CuInSe 2 nanocrystal-based solar cells

2017 
Solution processable nanocrystal solar cells combine the advantages of low-cost printing and wide range of accessible absorber materials, however high trap densities limit performance and layer thickness. In this work we develop a versatile route to realize the infiltration of a photonic crystal, with copper indium diselenide nanocrystal ink. The photonic crystal allows to couple incident light into pseudo-guided modes and thereby enhanced light absorption. For the presented design, we are able to identify individual guided modes, explain the underlying physics, and obtain a perfect match between the measured and simulated absorption peaks. For our relatively low refractive index layers, a 7% maximum integrated absorption enhancement is demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    6
    Citations
    NaN
    KQI
    []