Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation

2014 
A consequence of thermal diffusion is that heat, even when applied to a localized region of space, has the tendency to produce a temperature change that is spatially uniform throughout a material with a thermal conductivity that is much larger than that of its environment. This implies that the degree of spatial correlation between the heat power supplied and the temperature change that it induces is likely to be small. Here, we show, via theory and simulation, that through a Fano interference, temperature changes can be both localized and controllably directed within certain plasmon-supporting metal nanoparticle assemblies. This occurs even when all particles are composed of the same material and contained within the same diffraction-limited spot. These anomalous thermal properties are compared and contrasted across three different nanosystems, the coupled nanorod–antenna, the heterorod dimer, and the nanocube on a substrate, known to support both spatial and spectral Fano interferences. We conclude that...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    37
    Citations
    NaN
    KQI
    []