An in vitro selection strategy for conferring protease resistance to ligand binding peptides
2009
One drawback to the use of peptides as therapeutics has been their susceptibility to proteolysis. Here, we have used an in vitro display technology, CIS display, to enhance the proteolytic resistance of ligand-binding peptides by selection of protecting motifs from a large peptide library. The premise to this selection was that certain linear peptides within a library could form structures capable of preventing the access of proteases to defined cleavage sites without affecting ligand binding. A diverse 12-mer peptide library was inserted between a FLAG epitope motif and a thrombin cleavage site and this construct was fused to the bacterial initiator protein RepA for CIS display selection. After five rounds of selection, protection motifs were isolated that were capable of preventing proteolytic cleavage of the adjacent thrombin site. Some of the selected peptides were also resistant to more promiscuous proteases, such as chymotrypsin and trypsin, which were not used in the selection. The observed resistance to thrombin, trypsin and chymotrypsin translated into increased resistance to plasma proteases in vitro and to an increase in circulating half-lives in rats. This method can be applied to enhancing the in vivo stability of therapeutic peptides.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
25
Citations
NaN
KQI