Development of a cause analysis system for a CPCS trip by using the rule-base deduction method

2009 
Abstract A Core Protection Calculator System (CPCS) was developed to initiate a Reactor Trip under the circumstance of certain transients by a Combustion Engineering Company. The major function of the Core Protection Calculator System is to generate contact outputs for the Departure from Nucleate Boiling Ratio (DNBR) Trip and a Local Power Density (LPD) Trip. But in a Core Protection Calculator System, a trip cause cannot be identified, thus only trip signals are transferred to the Plant Protection System (PPS) and only the trip status is displayed. It could take a considerable amount of time and effort for a plant operator to analyze the trip causes of a Core Protection Calculator System. So, a Cause Analysis System for a Core Protection Calculator System (CASCPCS) has been developed by using the rule-base deduction method to assist operators in a Nuclear Power Plant. CASCPCS consists of three major parts. Inference engine has a role of controlling the searching knowledge base, executing the rules and tracking the inference process by using the depth-first searching method. Knowledge base consists of four major parts: rules, data base constants, trip buffer variables and causes. And a user interface is implemented by using menu-driven and window display techniques. The advantage of CASCPCS is that it saves time and effort to diagnose the trip causes of a Core Protection Calculator System, it increases a plant’s availability and reliability, and it makes it easy to manage CASCPCS because of using only a cursor control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []