In artificial intelligence, an expert system is a computer system that emulates the decision-making ability of a human expert.Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities. In artificial intelligence, an expert system is a computer system that emulates the decision-making ability of a human expert.Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities. The Very Early Developments Soon after the dawn of modern computers in the late 1940s – early 1950s, researchers started realizing the immense potential these machines had for modern society. One of the first challenges was to make such machine capable of “thinking” like humans. In particular, making these machines capable of making important decisions the way humans do. The medical / healthcare field presented the tantalizing challenge to enable these machines to make medical diagnostic decisions. Thus, in the late 1950’s, right after the information age had fully arrived, researchers started experimenting with the prospect of using computer technology to emulate human decision-making. For example, biomedical researchers started creating computer-aided systems for diagnostic applications in medicine and biology. These early diagnostic systems used patients’ symptoms and laboratory test results as inputs to generate a diagnostic outcome. These systems were often described as the early forms of expert systems. However, researchers had realized that there were significant limitations when using traditional methods such as flow-charts statistical pattern-matching, or probability theory. This previous situation gradually led to the development of expert systems, which used knowledge-based approaches. These expert systems in medicine were the MYCIN expert system, the INTERNIST-I expert system and later, in the middle of the 1980s, the CADUCEUS (expert system). Expert systems were formally introduced around 1965 by the Stanford Heuristic Programming Project led by Edward Feigenbaum, who is sometimes termed the 'father of expert systems'; other key early contributors were Bruce Buchanan and Randall Davis. The Stanford researchers tried to identify domains where expertise was highly valued and complex, such as diagnosing infectious diseases (Mycin) and identifying unknown organic molecules (Dendral). The idea that 'intelligent systems derive their power from the knowledge they possess rather than from the specific formalisms and inference schemes they use' – as Feigenbaum said – was at the time a significant step forward, since the past research had been focused on heuristic computational methods, culminating in attempts to develop very general-purpose problem solvers (foremostly the conjunct work of Allen Newell and Herbert Simon). Expert systems became some of the first truly successful forms of artificial intelligence (AI) software. Research on expert systems was also active in France. While in the US the focus tended to be on rule-based systems, first on systems hard coded on top of LISP programming environments and then on expert system shells developed by vendors such as Intellicorp, in France research focused more on systems developed in Prolog. The advantage of expert system shells was that they were somewhat easier for nonprogrammers to use. The advantage of Prolog environments was that they were not focused only on if-then rules; Prolog environments provided a much better realization of a complete first order logic environment. In the 1980s, expert systems proliferated. Universities offered expert system courses and two thirds of the Fortune 500 companies applied the technology in daily business activities. Interest was international with the Fifth Generation Computer Systems project in Japan and increased research funding in Europe.