Molecular interaction of fluorescent carbon dots from mature vinegar with human hemoglobin: Insights from spectroscopy, thermodynamics and AFM.

2021 
Abstract Foodborne nanoparticles have attracted considerable interest due to their distinctive fluorescence and physicochemical properties. The discovery of vinegar carbon dots (VCDs) has drawn our attention to study their effect on human plasma protein. Herein, spectral, constructional, morphological, and enzymatic activity assessments were carried out to investigate the interaction of VCDs with human hemoglobin (HHb). The intrinsic fluorescence of HHb was quenched significantly by the VCDs through a static quenching process. Furthermore, binding constants and important thermodynamic parameters were calculated, the negative enthalpy and entropy changes were accompanied by a negative Gibbs energy, which proposed the binding between VCDs with HHb was spontaneous. Moreover, negative enthalpy and entropy change corroborated the involvement of van der Waals force and hydrogen bonds in the binding process. Results from FTIR, atomic force microscopy and circular dichroism revealed change of HHB after binding with VCDs although their essential morphological features were unaffected. The esterase activity of HHb decreased after VCDs treatment in a dose-dependent manner, which further confirmed the effect of VCDs on HHb. The results offered detailed information about the interaction between VCDs and HHb.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []