Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering

2017 
Abstract Bacterial cellulose/hydroxyapatite (BC/HAp) composite had good bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Bacterial cellulose/gelatin (BC/GEL) double-network (DN) composite had excellent mechanical properties but was seldom used in biomedical fields. In this regard, a multi-component organic/inorganic composite BC-GEL/HAp DN composite was synthesized, which combined the advantages of BC/HAp and BC/GEL. Compared with BC/GEL, the BC-GEL/HAp exhibited rougher surface topography and higher thermal stability. Compression and tensile testing indicated that the mechanical strength of the BC-GEL/HAp was greatly reinforced compared with BC/HAp and was even higher than that of BC/GEL. In vitro cell culture demonstrated that the rat bone marrow-derived mesenchymal stem cells (rBMSCs) cultured on the BC-GEL/HAp showed better adhesion and higher proliferation and differentiation potential than the cells cultured on BC/GEL. We hope the BC-GEL/HAp composite could be used as ideal bone scaffold platform or biomedical membrane in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    40
    Citations
    NaN
    KQI
    []