Ultrafast Light-Driven Electron Transfer in a Ru(II)tris(bipyridine)-Labeled Multiheme Cytochrome

2019 
Multiheme cytochromes attract much attention for their electron transport properties. These proteins conduct electrons across bacterial cell walls and along extracellular filaments and when purified can serve as bionanoelectronic junctions. Thus, it is important and necessary to identify and understand the factors governing electron transfer in this family of proteins. To this end we have used ultrafast transient absorbance spectroscopy, to define heme–heme electron transfer dynamics in the representative multiheme cytochrome STC from Shewanella oneidensis in aqueous solution. STC was photosensitized by site-selective labeling with a Ru(II)(bipyridine)3 dye and the dynamics of light-driven electron transfer described by a kinetic model corroborated by molecular dynamics simulation and density functional theory calculations. With the dye attached adjacent to STC Heme IV, a rate constant of 87 × 106 s–1 was resolved for Heme IV → Heme III electron transfer. With the dye attached adjacent to STC Heme I, at t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    17
    Citations
    NaN
    KQI
    []