Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds.
2015
Abstract Two novel silk composites of phosphatic phases with nanosilver/chitosan having enhanced biocompatibility were achieved. Hydroxyapatite and octa calcium phosphates were synthesized in situ within silk fibroin/chitosan/nanosilver composites recently studied. Thermo-gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) verified their thermal behavior. The structural aspects were characterized applying X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) with EDAX. Additionally X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared spectroscopy (FTIR) were applied. Mercury porosimeter was used to verify the pore size distribution. The in vitro degradation was followed in D-MEM for 48 h in a cumulative manner for five successive periods. Biochemical analyses of Ca, P and total protein using relevant chemical kits and atomic absorption for silver were performed. ANOVA statistics was carried out. Phosphatic crystalline phases along with the presence of silk, chitosan and nano-silver were developed. The diameters of hydroxyapatite and octa calcium phosphate particles were ~ 8–17 nm and 15–22 nm respectively. Comparatively higher degradation of Octa composite possessing higher porosity proved in turn more osteoinduction with in situ apatitic development.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
9
Citations
NaN
KQI