A Selective Inverse Agonist for Central Cannabinoid Receptor Inhibits Mitogen-activated Protein Kinase Activation Stimulated by Insulin or Insulin-like Growth Factor 1 EVIDENCE FOR A NEW MODEL OF RECEPTOR/LIGAND INTERACTIONS

1997 
Abstract In the present study, we showed that Chinese hamster ovary (CHO) cells transfected with human central cannabinoid receptor (CB1) exhibit high constitutive activity at both levels of mitogen-activated protein kinase (MAPK) and adenylyl cyclase. These activities could be blocked by the CB1-selective ligand, SR 141716A, that functions as an inverse agonist. Moreover, binding studies showed that guanine nucleotides decreased the binding of the agonist CP-55,940, an effect usually observed with agonists, whereas it enhanced the binding of SR 141716A, a property of inverse agonists. Unexpectedly, we found that CB1-mediated effects of SR 141716A included inhibition of MAPK activation by pertussis toxin-sensitive receptor-tyrosine kinase such as insulin or insulin-like growth factor 1 receptors but not by pertussis toxin-insensitive receptor-tyrosine kinase such as the fibroblast growth factor receptor. We also observed similar results when cells were stimulated with Mas-7, a mastoparan analog, that directly activates the Gi protein. Furthermore, SR 141716A inhibited guanosine 5′-0-(thiotriphosphate) uptake induced by CP-55,940 or Mas-7 in CHO-CB1 cell membranes. This indicates that, in addition to the inhibition of autoactivated CB1, SR 141716A can deliver a biological signal that blocks the Gi protein and consequently abrogates most of the Gi-mediated responses. By contrast, SR 141716A had no effect on MAPK activation by insulin or IGF1 in CHO cells lacking CB1 receptors, ruling out the possibility of a direct interaction of SR 141716A with the Gi protein. This supports the notion that the Gi protein may act as a negative intracellular signaling cross-talk molecule. From these original results, which considerably enlarge the biological properties of the inverse agonist, we propose a novel model for receptor/ligand interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    451
    Citations
    NaN
    KQI
    []