Graphene-like MoS2 Nanosheets on Carbon Fabrics as High-Performance Binder-free Electrodes for Supercapacitors and Li-Ion Batteries

2018 
Two-dimensional layer-structure materials are now of great interest in energy storage devices, owing to their graphene-like structure and high theoretical capacity. Herein, graphene-like molybdenum disulfide (MoS2) nanosheets were uniformly grown on carbon fabrics by using a hydrothermal method. They were evaluated as binder-free electrodes for Li-ion batteries (LIBs) and supercapacitors. As expected, long cycling life and high capacity/capacitance are achieved. When used as self-standing electrodes for LIBs, they deliver a high area capacity of ∼0.5 mAh/cm2 even after 400 cycles and remarkable rate capability in the charge/discharge potential range of 1–3 V. In addition, a three-dimensional integrated electrode of the MoS2 nanosheet exhibits a high capacitance of 103.5 mF/cm2 and long cycling stability up to at least 15 000 cycles at a current density of 3 mA/cm2 for supercapacitors. The great cycling stability of MoS2 in supercapacitors is promising in the enhancement of cycling stability through their ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    19
    Citations
    NaN
    KQI
    []