Octamer 4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells

2016 
Wnt/β-catenin signaling is activated in CD133 liver cancer stem cells (CSCs), a subset of cells known to be a root of tumor recurrence and therapy resistance in hepatocellular carcinoma (HCC). However, the regulatory mechanism of this pathway in CSCs remains unclear. Here, we show that human microRNA (miRNA), miR-1246, promotes cancer stemness, including self-renewal, drug resistance, tumorigencity, and metastasis, by activation of the Wnt/β-catenin pathway through suppressing the expression of AXIN2 and glycogen synthase kinase 3β (GSK3β), two key members of the β-catenin destruction complex. Clinically, high endogenous and circulating miR-1246 was identified in HCC clinical samples and correlated with a worse prognosis. Further functional analysis identified octamer 4 (Oct4) to be the direct upstream regulator of miR-1246, which cooperatively drive β-catenin activation in liver CSCs. Conclusion: These findings uncover the noncanonical regulation of Wnt/β-catenin in liver CSCs by the Oct4/miR-1246 signaling axis, and also provide a novel diagnostic marker as well as therapeutic intervention for HCC. (Hepatology 2016;64:2062-2076).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    107
    Citations
    NaN
    KQI
    []