Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

2018 
Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, non-equilibrium plasma evolution and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultra-fast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s ! 2p transition in highly-charged ions within an optically-thin plasma we have measured how off-resonance charge states are populated via collisional processes on femtosecond times scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Non-LTE (local thermodynamic equilibrium) collisional radiative simulations show excellent agreement with the experimental results, and provide new insight on collisional ionization and three-body-recombination processes in the dense plasma regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    21
    Citations
    NaN
    KQI
    []