Crotalase, a Fibrinogen-Clotting Snake Venom Enzyme: Primary Structure and Evidence for a Fibrinogen Recognition Exosite Different from Thrombin

1999 
Crotalase, a fibrinogen-clotting enzyme isolated from the venom of Crotalus adamanteus, and its overlapping fragments were subjected to Edman degradation. The resulting amino acid sequence, VIGGDEC NINEHRFLVALYDYWSQLFLCGGTLINNEWVLTAAHCDRTHI LIYVGVHDRSVQFDKEQRRFPKEKYFFDCSNNFTKWDKDIM LIRLNKPVSYSEHIAPLSLPSSPPIVGSVCRAMGWGQTTSPQET LPDVPHCANINLLDYEVCRTAHPQFRLPATSRTLCAGVLEG GIDTCNRDSGGPLICNGQFQGIVFWGPDPCAQPDKPGLYTK VFDHLDWIQSIIAGEKTVNCP, is characteristic of a serine proteinase. Comparison with thrombin, the physiological fibrinogen-clotting enzyme, showed that thrombin’s fibrinogen-recognition exosite (FRE) is poorly represented in crotalase. Hirudin, a FRE-dependent inhibitor, had no effect on crotalase. Spatial modeling of crotalase yielded a possible alternative fibrinogen-recognition site comprised of Arg 60F, Lys 85, Lys 87, and Arg 107 (underlined in the sequence above). Crotalase also lacks thrombin’s YPPW loop, as well as its functionally important ETW 146-148, and its heparin-binding site. The enzyme contains a single asparagine-linked glycosylation site, NFT, bearing neutral and amino sugars that account for 8.3% of the enzyme’s total molecular weight of 29,027. The calculated absorbance of crotalase at 280 nm, 1%, cm -1 is 15.2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    24
    Citations
    NaN
    KQI
    []