Rh nanoroses for isopropanol oxidation reaction

2019 
Abstract Reducing the overpotential of alcohol oxidation reactions is highly desirable for alkaline direct alcohol fuel cells, but there is still no substantial progress. In this study, unique three-dimensional free-standing Rh nanoroses are synthesized and applied to the isopropanol oxidation reaction. Compared to traditional Pt black electrocatalyst, as-prepared Rh nanoroses exhibit a significant negative shift both in the onset oxidation potential (Δ = 0.223 V) and peak potential (Δ = 0.435 V) as well as 7.5-fold mass activity at 0.3 V for the isopropanol oxidation reaction (IOR) in alkaline electrolyte. The density functional theory calculation indicates the enhanced IOR activity originates form the higher adsorption energy of isopropanol on Rh surface than Pt surface. Since Rh nanoroses have unparalleled activity, this research may bring a new broad of perspective on the isopropanol oxidation reaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    23
    Citations
    NaN
    KQI
    []