Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair.

2008 
Objective: Platelet-rich concentrate (PRC) is an autologous growth factor preparation that is in routine use for orthopaedic and maxillofacial surgery. However, there are little data available describing the cellular and molecular mechanisms by which PRC enhances the healing response in an osseous environment. The aim of this study was to identify cellular and molecular events that are modulated in human mesenchymal stem cells (hMSCs) in response to exposure to human PRC generated by a novel filtration-based device (CAPTION, Smith & Nephew Inc). Methods: PRC and serum were prepared from blood donated by 11 volunteers. Growth factor content and release from PRC were determined by enzyme-linked immunosorbent assay. Cell proliferation was quantified by DNA content and osteoblastic differentiation by alkaline phosphatase expression and mineralized nodule formation. Real-time reverse transcription-polymerase chain reaction analysis was used to determine the early molecular pathways regulated in hMSCs by PRC. Results: The results obtained confirm previous in vitro and in vivo observations demonstrating that PRC enhances hMSC proliferation. Furthermore, our data suggest that when added as a clot, PRC induces an earlier onset of proliferation compared with serum without leading to cell overgrowth and the inhibition of cell differentiation. At the molecular level, PRC treatment stimulated a transient enhancement of bone morphogenetic protein-2 messenger RNA that peaked after 12 hours and induced an earlier and a sustained increase in the key osteogenic transcription factor RUNX2. By 3 days of treatment, PRC enhanced alkaline phosphatase activity more than 2-fold compared with donor-matched serum, and at 23 days, the increase in osteoblastic commitment translated to enhanced calcified matrix deposition. Conclusions: Taken together, the data presented here suggest that treatment of hMSC with clotted PRC, in an osteoinductive environment, enhances osteoblastic commitment and bone formation. Furthermore, these data indicate that the enhanced osteogenesis seen in the presence of PRC cannot be explained solely by enhanced cell proliferation, suggesting that PRC modulates a number of cell and molecular pathways to promote bone formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    31
    Citations
    NaN
    KQI
    []