The Role of an Iron-Sulfur Cluster in an Enzymatic Methylation Reaction METHYLATION OF CO DEHYDROGENASE/ACETYL-CoA SYNTHASE BY THE METHYLATED CORRINOID IRON-SULFUR PROTEIN

1999 
Abstract This paper focuses on how a methyl group is transferred from a methyl-cobalt(III) species on one protein (the corrinoid iron-sulfur protein (CFeSP)) to a nickel iron-sulfur cluster on another protein (carbon monoxide dehydrogenase/acetyl-CoA synthase). This is an essential step in the Wood-Ljungdahl pathway of anaerobic CO and CO2 fixation. The results described here strongly indicate that transfer of methyl group to carbon monoxide dehydrogenase/acetyl-CoA synthase occurs by an SN2 pathway. They also provide convincing evidence that oxidative inactivation of Co(I) competes with methylation. Under the conditions of our anaerobic assay, Co(I) escapes from the catalytic cycle one in every 100 turnover cycles. Reductive activation of the CFeSP is required to regenerate Co(I) and recruit the protein back into the catalytic cycle. Our results strongly indicate that the [4Fe-4S] cluster of the CFeSP is required for reductive activation. They support the hypothesis that the [4Fe-4S] cluster of the CFeSP does not participate directly in the methyl transfer step but provides a conduit for electron flow from physiological reductants to the cobalt center.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    57
    Citations
    NaN
    KQI
    []