language-icon Old Web
English
Sign In

Acetyl-CoA

Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Coenzyme A (CoASH or CoA) consists of a β-mercaptoethylamine group linked to the vitamin pantothenic acid through an amide linkage and 3'-phosphorylated ADP. The acetyl group (indicated in blue in the structural diagram on the right) of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a 'high energy' bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol).GlucoseHexokinaseGlucose 6-phosphateGlucose-6-phosphateisomeraseFructose 6-phosphatephosphofructokinase-1Fructose 1,6-bisphosphateFructose-bisphosphatealdolaseDihydroxyacetone phosphate+Glyceraldehyde 3-phosphateTriosephosphateisomerase2 × Glyceraldehyde 3-phosphateGlyceraldehyde-3-phosphatedehydrogenase2 × 1,3-BisphosphoglyceratePhosphoglycerate kinase2 × 3-PhosphoglyceratePhosphoglycerate mutase2 × 2-PhosphoglyceratePhosphopyruvatehydratase (Enolase)2 × PhosphoenolpyruvatePyruvate kinase2 × Pyruvate Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Coenzyme A (CoASH or CoA) consists of a β-mercaptoethylamine group linked to the vitamin pantothenic acid through an amide linkage and 3'-phosphorylated ADP. The acetyl group (indicated in blue in the structural diagram on the right) of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a 'high energy' bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol). CoA is acetylated to acetyl-CoA by the breakdown of carbohydrates through glycolysis and by the breakdown of fatty acids through β-oxidation. Acetyl-CoA then enters the citric acid cycle, where the acetyl group is oxidized to carbon dioxide and water, and the energy released is captured in the form of 11 ATP and one GTP per acetyl group. Konrad Bloch and Feodor Lynen were awarded the 1964 Nobel Prize in Physiology and Medicine for their discoveries linking acetyl-CoA and fatty acid metabolism. Fritz Lipmann won the Nobel Prize in 1953 for his discovery of the cofactor coenzyme A. The acetylation of CoA is determined by the carbon sources. Click on genes, proteins and metabolites below to visit Gene Wiki pages and related Wikipedia articles. The pathway can be downloaded and edited at WikiPathways.

[ "Metabolism", "Enzyme", "Acetoacetyl-CoA", "Acetyl-CoA binding", "Acetyl-CoA synthesis", "Acetyl-CoA metabolism", "1-alkyl-sn-glycero-3-phosphocholine" ]
Parent Topic
Child Topic
    No Parent Topic