Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize
2016
Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize ( Zea mays ), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H 2 O 2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco ( Nicotiana tabacum ) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H 2 O 2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
61
Citations
NaN
KQI