Identification of distinct activation pathways of the human neutrophil NADPH-oxidase.

1986 
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    136
    Citations
    NaN
    KQI
    []