Differentiation of Mesenchymal Stem Cells into Neural Stem Cells Using Cerebrospinal Fluid

2015 
Optimization of a methodology for mesenchymal stem cells (MSCs) differentiation into neural stem cells (NSCs) using cerebrospinal fluid (CSF). MSCs were extracted from umbilical cord blood from healthy, full-term, newborn infants and from the bone marrow of patients. CSF was taken from healthy adult volunteers and patients. Four groups investigated were: A (n = 8) cord blood MSC induced with healthy volunteer CSF (control group); B (n = 7): patient MSCs induced with health volunteer CSF; Group C (n = 12): patient MSCs induced with their own CSF; group D (n = 6): cord blood MSCs induced with patient CSF. Following induction, cell differentiation state was examined using microscopy, flow cytometry, and immunohistochemistry. There were significantly more clinically applicable MSCs in Groups B and C than groups A and D (P < 0.05) and Group B had significantly more clinically applicable MSCs than group C (P < 0.05). The presence of NSCs was as with the MSCs. Group B had significantly more clinically applicable NSCs than all of the other groups. In addition, group B cells grew significantly faster than the other groups (P < 0.05). Upon CSF induction, MSCs differentiated into NSCs suitable for clinical treatment. The source of the MSCs and/or CSF influenced the number of NSCs produced and the NSC growth rate. Thus, the source of MSCs and CSF should be considered before initiating a stem cell clinical treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    14
    Citations
    NaN
    KQI
    []