Plasmon Resonance Enhanced Optical Absorption in Inverted Polymer/Fullerene Solar Cells with Metal Nanoparticle-Doped Solution-Processable TiO2 Layer

2013 
This paper investigates the effects of localized surface plasmon resonance (LSPR) in an inverted polymer/fullerene solar cell by incorporating Au and/or Ag nanoparticles (NPs) into the TiO2 buffer layer. Enhanced light harvesting via plasmonic resonance of metal NPs has been observed. It results in improved short-circuit current density (Jsc) while the corresponding open-circuit voltage (Voc) is maintained. A maximum power conversion efficiency of 7.52% is obtained in the case of introducing 30% Ag NPs into the TiO2, corresponding to a 20.7% enhancement compared with the reference device without the metal NPs. The device photovoltaic characteristics, photocurrent properties, steady-state and dynamic photoluminescences of active layer on metal NP-doped TiO2, and electric field profile in metal NP-doped TiO2 layers are systematically investigated to explore how the plasmonic effects of Au and/or Ag NPs influence the OSC performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    95
    Citations
    NaN
    KQI
    []