Thermoelectric Performance Optimization in p-Type CeyFe3CoSb12 Skutterudites

2014 
In this study, we investigated the impact of the Ce filling fraction on the thermoelectric properties of p-type filled skutterudites Ce y Fe3CoSb12 (y = 0.6 to 1.0). The electrical conductivity decreases gradually with increasing y, while the Seebeck coefficient displays an opposite variation tendency, consistent with the expected electron donor role of the Ce filler in this compound. The overall power factors are invariable among all the samples. Alteration of the Ce filling fraction exerts little influence on the phonon transport, but the total thermal conductivity markedly declined with increasing y due to the reduced contribution to heat transfer from carriers. As a consequence, the maximum thermoelectric figure of merit ZT reaches ∼0.8 for the sample with y = 0.9, comparable to that of pure Fe-based skutterudite CeFe4Sb12; more importantly, the former possesses a much larger average ZT between 300 K and 800 K than the latter, showing superior potential for use in intermediate-temperature thermoelectric power generation applications. Further enhancement of ZT in p-type Fe3CoSb12-based skutterudites could be realized via nanostructuring or a multiple-filling approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    22
    Citations
    NaN
    KQI
    []