language-icon Old Web
English
Sign In

Thermoelectric generator

A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux (temperature differences) directly into electrical energy through a phenomenon called the Seebeck effect (a form of thermoelectric effect). Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient. A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux (temperature differences) directly into electrical energy through a phenomenon called the Seebeck effect (a form of thermoelectric effect). Thermoelectric generators function like heat engines, but are less bulky and have no moving parts. However, TEGs are typically more expensive and less efficient. Thermoelectric generators could be used in power plants in order to convert waste heat into additional electrical power and in automobiles as automotive thermoelectric generators (ATGs) to increase fuel efficiency. Another application is radioisotope thermoelectric generators which are used in space probes, which has the same mechanism but use radioisotopes to generate the required heat difference. In 1821, Thomas Johann Seebeck rediscovered that a thermal gradient formed between two dissimilar conductors can produce electricity. At the heart of the thermoelectric effect is the fact that a temperature gradient in a conducting material results in heat flow; this results in the diffusion of charge carriers. The flow of charge carriers between the hot and cold regions in turn creates a voltage difference. In 1834, Jean Charles Athanase Peltier discovered the reverse effect, that running an electric current through the junction of two dissimilar conductors could, depending on the direction of the current, cause it to act as a heater or cooler. Thermoelectric power generators consist of three major components: thermoelectric materials, thermoelectric modules and thermoelectric systems that interface with the heat source. Thermoelectric materials generate power directly from heat by converting temperature differences into electric voltage. These materials must have both high electrical conductivity (σ) and low thermal conductivity (κ) to be good thermoelectric materials. Having low thermal conductivity ensures that when one side is made hot, the other side stays cold, which helps to generate a large voltage while in a temperature gradient. The measure of the magnitude of electrons flow in response to a temperature difference across that material is given by the Seebeck coefficient (S). The efficiency of a given material to produce a thermoelectric power is governed by its “figure of merit” zT = S2σT/κ. For many years, the main three semiconductors known to have both low thermal conductivity and high power factor were bismuth telluride (Bi2Te3), lead telluride (PbTe), and silicon germanium (SiGe). These materials have very rare elements which make them very expensive compounds. Today, the thermal conductivity of semiconductors can be lowered without affecting their high electrical properties using nanotechnology. This can be achieved by creating nanoscale features such as particles, wires or interfaces in bulk semiconductor materials. However, the manufacturing processes of nano-materials are still challenging. Thermoelectric generators are all solid state devices that do not require any fluids for fuel or cooling, making them non-orientation dependent allowing for use in zero-gravity or deep sea applications. The solid state design is synergistic with existing production methods and allows for operation in severe environments. Thermoelectric generators have no moving parts which produces a more reliable device that does not require maintenance for long periods. The durability and environmental stability have made thermoelectrics a favorite for NASA's deep space explorers among other applications. One of the key advantages of thermoelectric generators outside of such specialized applications is that they can potentially be integrated into existing technologies to boost efficiency and reduce environmental impact by producing usable power from waste heat.

[ "Thermoelectric effect", "MHW-RTG", "Radioisotope thermoelectric generator", "thermoelectric energy harvesting", "thermal energy harvesting", "thermoelectric energy conversion" ]
Parent Topic
Child Topic
    No Parent Topic