A potential contribution of dipeptidyl peptidase-4 by the mediation of monocyte differentiation in the development and progression of abdominal aortic aneurysms

2017 
Abstract Objective Abdominal aortic aneurysms (AAAs) are characterized by the destruction of elastin and collagen in the media and adventitia. Dipeptidyl peptidase-4 (DPP-4, an adipokine known as CD26) influences cell signaling, cell-matrix interactions, and the regulation of the functional activity of incretins in metabolic and inflammatory disorders. Although the role of DPP-4 in AAA evolution has been demonstrated, the underlying mechanisms of DPP-4-regulated AAA development remains unknown. Methods Patients with AAA (n = 93) and healthy controls (CTL, n = 20) were recruited. Based on computed tomography image analyses, 93 patients were divided into two groups: those with a small AAA (SAA, aortic diameter  tmlUnc mice were used to explore the underlying mechanisms. Results The levels of DPP-4 (μU/μg) increased while active glucagon-like peptide-1 (pM) decreased in patients with AAA in a diameter-dependent manner [CTL: 2.3 ± 1.5 and 3.7 ± 2.4, respectively; SAA: 10.0 ± 10.9 and 2.1 ± 0.9, respectively; LAA: 32.2 ± 15.0 and 1.8 ± 1.1, respectively]. A significant decline in monocyte CD26 expression in patients with AAAs was observed relative to the CTL group. In vitro studies demonstrated that the inhibition of DPP-4 promoted PMA-induced monocytic cells differentiation, with increased CD68 and p21 expression, regulated by extracellular signal-regulated protein kinase 1/2 activation. Furthermore, inhibition of DPP-4 significantly increased the phosphorylation of PYK2 and paxillin in PMA-induced THP-1 cell differentiation. Finally, the animal study was used to confirm the in vitro results that LAA mice showed marked macrophage infiltration in the adventitia with a decreased expression of DPP-4 as compared with SAA mice. Conclusions Increased plasma DPP-4 activity may correlate with aneurysmal development. CD26 on monocytes plays a critical role in cell differentiation, possibly mediated by extracellular signal-regulated protein kinase 1/2-p21 axis signaling pathways and cytoskeletal proteins reassembly. Exploring the role of DPP-4 further may yield potential therapeutic insights.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    7
    Citations
    NaN
    KQI
    []