Highly sensitive spintronic strain-gauge sensor based on a MgO magnetic tunnel junction with an amorphous CoFeB sensing layer

2018 
We investigated spintronic strain-gauge sensors (Spin-SGSs) based on magnetic tunnel junctions (MTJs). To enhance the strain sensitivity of Spin-SGSs, which is defined as the gauge factor = (ΔR/R)/Δe, we investigated MgO-MTJs with an amorphous CoFeB sensing layer that exhibits high magnetostriction and soft magnetic properties. To maintain the amorphous structure of the CoFeB sensing layer even after post annealing, we applied a MgO capping layer (MgO-cap) to the CoFeB sensing layer and compared it with a Ta capping layer (Ta-cap). After post annealing at 320 °C, the CoFeB sensing layer with a MgO-cap maintained a low coercivity of 3 Oe, whereas that with a Ta-cap exhibited a high coercivity of 25 Oe. Microstructure analysis revealed that the CoFeB sensing layer with the MgO-cap has an amorphous structure because boron remains in the CoFeB sensing layer even after post annealing. The gauge factor for the Spin-SGS with the MgO-cap was 4016, which was four times larger than 942 for the Spin-SGS with the Ta-cap.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    14
    Citations
    NaN
    KQI
    []