Hybrid solar cells based on thin-film silicon and P3HT - A first step towards nano-structured devices

2006 
Hybrid concepts based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the cost efficiency of solar cells through a better use of the solar spectrum, a higher aspect ratio of the interface, and the good processability of polymers. A new type of solar cells has been investigated. It is based on a heterojunction between regio-regular poly(3-hexylthiophene) as an organic electron donor and silicon as an inorganic electron acceptor. In a first step towards nano-structured devices, cells made of flat thin films of these materials have been studied as a model case of the heterojunction. The materials were characterized through ellipsometry and absorption spectroscopy. The devices were studied by means of their spectral response and their I - V characteristics. By combining these results, the contribution of each layer and the mechanisms of photocurrent generation are explained. The best cells to-date show a power conversion efficiency of 1.6% under AM 1.5 illumination, with a V oc of 0.704 V and a J sc of 4.22 mA/cm 2 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    39
    Citations
    NaN
    KQI
    []