Halide-Assisted Synthesis of Cadmium Chalcogenide Nanoplatelets

2020 
Atomically flat colloidal semiconductor CdSe nanoplatelets (NPLs) with precisely controlled thickness possess a range of unique optoelectronic properties. Here, we study the growth of CdSe, CdTe, and CdS NPLs with the aim of synthesizing thicker NPLs in order to extend their optical activity further into the lower energy/larger wavelength range. We employ cadmium halides, which lead to faster reaction kinetics as confirmed by control experiments with cadmium hydroxide as a Cd-precursor. Addition of halides in all cases led to the formation of thicker NPL species, as compared with the corresponding syntheses without these additives. Analysis of a recent theoretical model of the platelet growth mechanism confirms an earlier suggestion that reducing both the reaction enthalpy and the surface energy of CdSe, by replacing acetate ligands with chloride ions, should indeed lead to thicker NPLs as observed. We noticed a formation of Cd0-metal nanoparticles in the first stage of the synthesis by preparing the Cd-p...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    15
    Citations
    NaN
    KQI
    []