SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla

2017 
Dental tissue-derived mesenchymal stem cells (MSCs) are easily obtained and considered as a favorable cell source for tissue engineering, but the regulation of direct differentiation is unknown which restricts their application. The present study investigated the effect of SFRP2, a WNT signaling modulator, on MSC differentiation using stem cells from apical papilla (SCAPs). The cells were cultured in specific inducing medium for adipogenic, neurogenic, or chondrogenic differentiation. Over-expression of SFRP2 via lentiviral infection enhanced the adipogenic and neurogenic differentiation of SCAPs. While inhibit of WNT pathway by IWR1-endo could enhance the neurogenic differentiation potentials of SCAPs, similar with the function of SFRP2. In addition, over-expression of SFRP2 up-regulated the expression of stemness-related genes SOX2 and OCT4. Furthermore, SOX2 and OCT4 expression was significantly inhibited after lentiviral silencing of SFRP2 in SCAPs. Therefore, our results suggest that SFRP2 enhances the adipogenic and neurogenic differentiation potentials of SCAPs by up-regulating SOX2 and OCT4. Moreover, the effect of SFRP2 in neurogenic differentiation of SCAPs maybe also associated with WNT inhibition. Our results provided useful information about the molecular mechanism underlying directed differentiation in dental tissue-derived MSCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    12
    Citations
    NaN
    KQI
    []