Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks

2015 
A refractive index sensor with a free spectral range that is unlimited by neighboring mode spacing (10 fold increase with respect to 20 nm of an unmodified ring), based on an optical silicon-on-insulator microring resonator patterned with periodically arranged set of gold nanodisks, is presented and numerically verified. It is shown that the particular periodic arrangement of nanodisks selects a single resonance from a wide set of ring resonator modes and removes mode splitting. Extraction of the waveguided electromagnetic energy into evanescent plasmonic modes enhances light–analyte interaction and increases device sensitivity to variation of refractive index up to 176  nm/RIU (about 2-fold increase compared to the unmodified ring), which is useful for sensor applications. Proof of the concept is presented by finite-difference time-domain simulations of a design readily practicable by means of modern nanotechnology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    31
    Citations
    NaN
    KQI
    []