Immune Cell Regulation and Cardiovascular Effects of Sphingosine 1-Phosphate Receptor Agonists in Rodents Are Mediated via Distinct Receptor Subtypes

2004 
Sphingosine 1-phosphate (S1P) is a bioactive lysolipid with pleiotropic functions mediated through a family of G proteincoupled receptors, S1P 1,2,3,4,5 . Physiological effects of S1P receptor agonists include regulation of cardiovascular function and immunosuppression via redistribution of lymphocytes from blood to secondary lymphoid organs. The phosphorylated metabolite of the immunosuppressant agent FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol) and other phosphonate analogs with differential receptor selectivity were investigated. No significant species differences in compound potency or rank order of activity on receptors cloned from human, murine, and rat sources were observed. All synthetic analogs were high-affinity agonists on S1P 1 , with IC 50 values for ligand binding between 0.3 and 14 nM. The correlation between S1P 1 receptor activation and the ED 50 for lymphocyte reduction was highly significant ( p 1 -mediated effects on lymphocyte recirculation, three lines of evidence link S1P 3 receptor activity with acute toxicity and cardiovascular regulation: compound potency on S1P 3 correlated with toxicity and bradycardia; the shift in potency of phosphorylated-FTY720 for inducing lymphopenia versus bradycardia and hypertension was consistent with affinity for S1P 1 relative to S1P 3 ; and toxicity, bradycardia, and hypertension were absent in S1P 3 -/- mice. Blood pressure effects of agonists in anesthetized rats were complex, whereas hypertension was the predominant effect in conscious rats and mice. Immunolocalization of S1P 3 in rodent heart revealed abundant expression on myocytes and perivascular smooth muscle cells consistent with regulation of bradycardia and hypertension, whereas S1P 1 expression was restricted to the vascular endothelium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    293
    Citations
    NaN
    KQI
    []