Thioredoxin targets in Arabidopsis roots.

2010 
The importance of redox-regulation in Arabidopsis thaliana roots has been investigated through the identification of the proteins interacting with thioredoxin (TRX), an ubiquitous thiol-disulfide reductase. We have applied a proteomic approach based on affinity chromatography on a monocysteinic mutant of plastidial y-type TRX used as a bait to trap putative partners in a crude extract of root proteins. Seventy-two proteins have been identified, functioning mainly in metabolism, detoxification and response to stress, protein processing and signal transduction. This study allowed us to isolate 24 putative new targets and to propose the mevalonic acid-dependent biosynthesis of isoprenoids as a new redox-mediated process. The redox-regulation of phenylpropanoid biosynthesis is also suggested, three enzymes of this pathway being retained on the column. We also provided experimental evidence that phenylammonia-lyase was enzymatically more active when reduced by TRXy in root crude extract. Among the high number of partners involved in defense against stress we isolated from the column, we focused on plastidial monodehydroascorbate reductase and showed that its activity was dramatically increased in vitro in the presence of DTT-reduced TRXy1 in root crude extracts. Our data strongly suggest that TRXy1 could be the physiological regulator of monodehydroascorbate reductase in root plastids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    43
    Citations
    NaN
    KQI
    []