On $n$-superharmonic functions and some geometric applications

2021 
In this paper we study asymptotic behaviors of n-superharmonic functions at singularity using the Wolff potential and capacity estimates in nonlinear potential theory. Our results are inspired by and extend [6] of Arsove–Huber and [63] of Taliaferro in 2 dimensions. To study n-superharmonic functions we use a new notion of thinness in terms of n-capacity motivated by a type of Wiener criterion in [6]. To extend [63], we employ the Adams–Moser–Trudinger’s type inequality for the Wolff potential, which is inspired by the inequality used in [15] of Brezis–Merle. For geometric applications, we study the asymptotic end behaviors of complete conformally flat manifolds as well as complete properly embedded hypersurfaces in hyperbolic space. These geometric applications seem to elevate the importance of n-Laplace equations and make a closer tie to the classic analysis developed in conformal geometry in general dimensions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []