language-icon Old Web
English
Sign In

Potential theory

In mathematics and mathematical physics, potential theory is the study of harmonic functions. In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term 'potential theory' was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation — or in the vacuum, Laplace's equation. There is considerable overlap between potential theory and the theory of Poisson's equation to the extent that it is impossible to draw a distinction between these two fields. The difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution depends on the boundary data would be said to belong to the theory of the Laplace equation. This is not a hard and fast distinction, and in practice there is considerable overlap between the two fields, with methods and results from one being used in the other. Modern potential theory is also intimately connected with probability and the theory of Markov chains. In the continuous case, this is closely related to analytic theory. In the finite state space case, this connection can be introduced by introducing an electrical network on the state space, with resistance between points inversely proportional to transition probabilities and densities proportional to potentials. Even in the finite case, the analogue I-K of the Laplacian in potential theory has its own maximum principle, uniqueness principle, balance principle, and others. A useful starting point and organizing principle in the study of harmonic functions is a consideration of the symmetries of the Laplace equation. Although it is not a symmetry in the usual sense of the term, we can start with the observation that the Laplace equation is linear. This means that the fundamental object of study in potential theory is a linear space of functions. This observation will prove especially important when we consider function space approaches to the subject in a later section. As for symmetry in the usual sense of the term, we may start with the theorem that the symmetries of the n {displaystyle n} -dimensional Laplace equation are exactly the conformal symmetries of the n {displaystyle n} -dimensional Euclidean space. This fact has several implications. First of all, one can consider harmonic functions which transform under irreducible representations of the conformal group or of its subgroups (such as the group of rotations or translations). Proceeding in this fashion, one systematically obtains the solutions of the Laplace equation which arise from separation of variables such as spherical harmonic solutions and Fourier series. By taking linear superpositions of these solutions, one can produce large classes of harmonic functions which can be shown to be dense in the space of all harmonic functions under suitable topologies. Second, one can use conformal symmetry to understand such classical tricks and techniques for generating harmonic functions as the Kelvin transform and the method of images. Third, one can use conformal transforms to map harmonic functions in one domain to harmonic functions in another domain. The most common instance of such a construction is to relate harmonic functions on a disk to harmonic functions on a half-plane. Fourth, one can use conformal symmetry to extend harmonic functions to harmonic functions on conformally flat Riemannian manifolds. Perhaps the simplest such extension is to consider a harmonic function defined on the whole of Rn (with the possible exception of a discrete set of singular points) as a harmonic function on the n {displaystyle n} -dimensional sphere. More complicated situations can also happen. For instance, one can obtain a higher-dimensional analog of Riemann surface theory by expressing a multi-valued harmonic function as a single-valued function on a branched cover of Rn or one can regard harmonic functions which are invariant under a discrete subgroup of the conformal group as functions on a multiply connected manifold or orbifold.

[ "Geometry", "Calculus", "Quantum mechanics", "Classical mechanics", "Mathematical analysis", "Kramers' law", "polar set" ]
Parent Topic
Child Topic
    No Parent Topic